110 research outputs found

    Multi-State System Reliability: A New and Systematic Review

    Get PDF
    AbstractReliability analysis considering multiple possible states is known as multi-state (MS) reliability analysis. Multi-state system reliability models allow both the system and its components to assume more than two levels of performance. Through multi-state reliability models provide more realistic and more precise representations of engineering systems, they are much more complex and present major difficulties in system definition and performance evaluation. MSS reliability has received a substantial amount of attention in the past four decades. This article presents a new and systematic review about multi-state system reliability. A timely review is an effective work related to improving the development of MSS theory. The review about the latest studies and advances about multi-state system reliability evaluation, multi-state systems optimization and multi-state systems maintenance is summarized in this paper

    A Review on the Little Ice Age and Factors to Glacier Changes in the Tian Shan, Central Asia

    Get PDF
    Mountain glaciers are a reliable and unequivocal indicator of climate change due to their sensitive response to changes in temperature and precipitation. The importance of mountain glaciers is best reflected in regions with limited precipitation, such as arid and semi-arid central Asia. High concentration of glaciers and meltwater from the Tian Shan contribute considerably to the freshwater resource in Xinjiang (China), Kyrgyzstan and nearby countries. Documenting glacier distribution and research on glacier changes can provide insights and scientific support for water management in central Asia. As the most recent glacial event, the Little Ice Age (LIA, approximately AD 1300–1850) signifies the cold periods prior to the warming trend in the twentieth century. Here we present an overview of topics recently studied on the modern and LIA glaciers in the Tian Shan of the central Asia. With data sets of the Glacier Inventory of China and the presumed LIA glacial extents, we applied statistical models in a case study of the eastern Tian Shan to examine the impact of local topographic and geometric factors on glacier area changes. The findings of glacier size and elevation as key local factors are representative and consistent with other studies

    Landslide Inventory (2001–2017) of Chittagong Hilly Areas, Bangladesh

    Get PDF

    LiDAR-based Sinkhole Detection and Mapping in Knox County, Tennessee

    Get PDF
    Sinkholes are one of the major causes of damage to roads, buildings, and other infrastructure throughout the US. Sinkholes near or on roads are especially costly and occasionally deadly. Knox County and much of East Tennessee are located within karst areas (comprised of porous and soluble limestone and dolomite), deeming it at risk for sinkholes. Currently, Knox County uses contour maps to manually identify sinkholes. Supported by a geographic information system (GIS), we developed a streamlined model to identify the locations and extents of potential sinkholes using 1.3-ft resolution LiDAR (Light Detection and Ranging) data and applied it to the Dutchtown area of Knox County. This model consists of creating a Digital Elevation Model (DEM), filling the depressions in the DEM, extracting the depressions with a DEM difference, converting the depressions to a polygon shapefile, and analyzing the shape characteristics of the depressions. This work provides a pilot study for Knox County Stormwater Management in identifying potential sinkholes and has the potential to be used in other similar regions

    Assessing the Impact of a Geospatial Data Collection App on Student Engagement in Environmental Education

    Get PDF
    A critical component of environmental education is to ensure student understanding and use of available technologies to better experience and analyze spatially distributed features of the environment. Combining mobile technologies with geographic information systems in field data collection may provide a unique opportunity for students to feel engaged in what they are learning and take ownership of their learning process. We customized an open access data collection application using Collector for ArcGIS and investigated its impacts on student engagement and perception of the incorporation of technology within an environmental science curriculum. Analyses of pre- and post-surveys indicate that the inclusion of geospatial technologies as a part of environmental curricula allows students to take the lead on their own research, view field data interactively as opposed to looking at a database in hindsight and analyze multiscale data as it is presented during field data collection. The findings of this study are consistent with previous studies, suggesting a strong association between the inclusion of geospatial technologies as a part of curricula and student engagement

    MODIS-Derived Spatiotemporal Changes of Major Lake Surface Areas in Arid Xinjiang, China, 2000–2014

    Get PDF
    Inland water bodies, which are critical freshwater resources for arid and semi-arid areas, are very sensitive to climate change and human disturbance. In this paper, we derived a time series of major lake surface areas across Xinjiang Uygur Autonomous Region (XUAR), China, based on an eight-day MODIS time series in 500 m resolution from 2000 to 2014. A classification approach based on water index and dynamic threshold selection was first developed to accommodate varied spectral features of water pixels at different temporal steps. The overall classification accuracy for a MODIS-derived water body is 97% compared to a water body derived using Landsat imagery. Then, monthly composites of water bodies were derived for the months of April, July, and September to identify seasonal patterns and inter-annual dynamics of 10 major lakes (\u3e100 km2) in XUAR. Our results indicate that the changing trends of surface area of major lakes varied across the region. The surface areas of the Ebinur and Bosten Lakes showed a significant shrinking trend. The Ulungur-Jili Lake remained relatively stable during the entire period. For mountain lakes, the Barkol Lake showed a decreasing trend in April and July, but the Sayram Lake showed a significant expanding trend in September. The four plateau lakes exhibited significant expanding trends in all three seasons except for Arkatag Lake in July. The shrinking of major lakes reflects severe anthropogenic impacts due to agricultural and industrial needs, in addition to the impact of climate change. The pattern of lake changes across the XUAR can provide insight into the impact of climate change and human activities on regional water resources in this arid and semi-arid region

    A Comprehensive Method for Assessing Meat Freshness Using Fusing Electronic Nose, Computer Vision, and Artificial Tactile Technologies

    Get PDF
    The traditional methods cannot be used to meet the requirements of rapid and objective detection of meat freshness. Electronic nose (E-Nose), computer vision (CV), and artificial tactile (AT) sensory technologies can be used to mimic humans’ compressive sensory functions of smell, look, and touch when making judgement of meat quality (freshness). Though individual E-Nose, CV, and AT sensory technologies have been used to detect the meat freshness, the detection results vary and are not reliable. In this paper, a new method has been proposed through the integration of E-Nose, CV, and AT sensory technologies for capturing comprehensive meat freshness parameters and the data fusion method for analysing the complicated data with different dimensions and units of six odour parameters of E-Nose, 9 colour parameters of CV, and 4 rubbery parameters of AT for effective meat freshness detection. The pork and chicken meats have been selected for a validation test. The total volatile base nitrogen (TVB-N) assays are used to define meat freshness as the standard criteria for validating the effectiveness of the proposed method. The principal component analysis (PCA) and support vector machine (SVM) are used as unsupervised and supervised pattern recognition methods to analyse the source data and the fusion data of the three instruments, respectively. The experimental and data analysis results show that compared to a single technology, the fusion of E-Nose, CV, and AT technologies significantly improves the detection performance of various freshness meat products. In addition, partial least squares (PLS) is used to construct TVB-N value prediction models, in which the fusion data is input. The root mean square error predictions (RMSEP) for the sample pork and chicken meats are 1.21 and 0.98, respectively, in which the coefficient of determination () is 0.91 and 0.94. This means that the proposed method can be used to effectively detect meat freshness and the storage time (days)

    Microstructural and functional impairment of the basal ganglia in Wilson’s disease: a multimodal neuroimaging study

    Get PDF
    ObjectivesMagnetic susceptibility changes in brain MRI of Wilson’s disease (WD) patients have been described in subcortical nuclei especially the basal ganglia. The objectives of this study were to investigate its relationship with other microstructural and functional alterations of the subcortical nuclei and the diagnostic utility of these MRI-related metrics.MethodsA total of 22 WD patients and 20 healthy controls (HCs) underwent 3.0T multimodal MRI scanning. Susceptibility, volume, diffusion microstructural indices and whole-brain functional connectivity of the putamen (PU), globus pallidus (GP), caudate nucleus (CN), and thalamus (TH) were analyzed. Receiver operating curve (ROC) was applied to evaluate the diagnostic value of the imaging data. Correlation analysis was performed to explore the connection between susceptibility change and microstructure and functional impairment of WD and screen for neuroimaging biomarkers of disease severity.ResultsWilson’s disease patients demonstrated increased susceptibility in the PU, GP, and TH, and widespread atrophy and microstructural impairments in the PU, GP, CN, and TH. Functional connectivity decreased within the basal ganglia and increased between the PU and cortex. The ROC model showed higher diagnostic value of isotropic volume fraction (ISOVF, in the neurite orientation dispersion and density imaging model) compared with susceptibility. Severity of neurological symptoms was correlated with volume and ISOVF. Susceptibility was positively correlated with ISOVF in GP.ConclusionMicrostructural impairment of the basal ganglia is related to excessive metal accumulation in WD. Brain atrophy and microstructural impairments are useful neuroimaging biomarkers for the neurological impairment of WD

    Long-Term Hydrological Impacts of Land Use/Land Cover Change From 1984 to 2010 in the Little River Watershed, Tennessee

    Get PDF
    Assessing long-term hydrological impacts of land use/land cover (LULC) change is of critical importance for land use planning and water resource management. The Little River Watershed, Tennessee, is an important watershed supporting drinking water and recreational activities within and around the Great Smoky Mountains National Park in the Unites States. However, the potential hydrological impacts of LULC change, especially urbanization in recent decades, are not quantified. This paper assessed the long-term impacts of LULC change on streamflow and non-point source pollution using the Soil and Water Assessment Tool (SWAT) and a detailed LULC record from 1984 to 2010. The SWAT was first calibrated and validated using observed streamflowin 2010 and then simulated using different LULC patterns in 1984-2010 to quantify the long-term hydrological impacts caused by the LULC change. Simulated results indicated a minor 3% increase in streamflow for the whole watershed from 1984 to 2010, but with a distinct spatial pattern. The increase in streamflow is closely related to urban development. Almost no streamflow increase occurred in the upper watershed within the national park, whereas >10% increase occurred in the lower watershed, especially in areas close to cities. Model simulation also suggested 34.6% reduction in sediment and about 10% reduction in nutrient loads from 1984 to 2010, closely related to the decrease in agricultural land. However, without calibration and validation, the simulated reduction in the sediment and nutrient loads may be problematic because SWAT mainly simulates the static LULC patterns, whereas LULC transitions, such as construction phases, may generate more sediment and nutrient loads. In addition, the simulation also did not account for the sediment and nutrients generated from stream bank erosion
    • …
    corecore